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Abstract. BERT based ranking models are emerging for its superior
natural language understanding ability. The attention matrix learned
through BERT captures all the word relations in the input text. How-
ever, neural ranking models focus only on the text matching between
query and document. To solve this problem, we propose a graph recur-
rent neural network based model to refine word representations from
BERT for document ranking, referred to as Latent Graph Recurrent
Network (LGRe for short). For each query and document pair, word rep-
resentations are learned through transformer layer. Based on these word
representations, we propose masking strategies to construct a bipartite-
core word graph to model the matching between the query and docu-
ment. Word representations will be further refined by graph recurrent
neural network to enhance word relations in this graph. The final rele-
vance score is computed from refined word representations through fully
connected layers. Moreover, we propose a triangle distance loss func-
tion for embedding layers as an auxiliary task to obtain discriminative
representations. It is optimized jointly with pairwise ranking loss for ad
hoc document ranking task. Experimental results on public benchmark
TREC Robust04 and WebTrack2009-12 test collections show that LGRe
(The implementation is available at https://github.com/DQ0408/LGRe)
outperforms state-of-the-art baselines more than 2%.
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1 Introduction

Neural ranking models focus on learning query-document matching patterns, i.e.,
knowledge about search tasks. Recently, pretrained neural language models learn
such knowledge from an extensive text collection and provide new opportunities
for document ranking.

Word embedding [17] applied to document ranking is pretrained with a large
corpus based on word co-occurrences within a window of the input text. Unlike
such word embedding only encoding the local context, word representations
learned from BERT are a function of the entire input text. Taking the con-
catenation of query and document as input, BERT is naturally fit for the search
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task. The reason lies in that the attention matrix contains query-document inter-
action on the word level. In this sense, BERT based ranking model belongs to
interaction based neural ranking models [7].

However, interaction based models only care for matching patterns between
query and document. The attention matrix learned from BERT brings about
additional word relations in the query-document matching process, such as
query-query and document-document word relations. Whether these additional
word relations are useful to derive the query-document relevance pattern remains
unknown. One interesting observation is that long natural language queries per-
form better than short keyword queries for BERT based ranking models in doc-
ument ranking tasks [2]. The problem that additional relations are dominant in
the attention matrix is more serious for short queries.

To solve this problem, we propose a graph recurrent neural network based
method to refine word embedding learned from BERT in the document ranking
task. For each query and document pair, BERT first takes their concatenation as
input and obtain word representations. Then, a masking method is adopted to
construct a bipartite-core word graph as the matching between query and doc-
ument, which is a masked attention matrix derived from learned word represen-
tations. Distinguished from explicitly defined graphs, the latent graph is learned
from BERT for the following word representation refinement layer. To enhance
word relations in this graph, word representations are updated through a gated
recurrent unit. The final query and document pair representation is summarized
from refined word representations and used for prediction. Pairwise ranking loss
is a function of relevance scores. Moreover, a triangle distance loss is proposed as
function of query, document and query-document pair representations to learn
discriminative representations. Both loss functions are optimized jointly in an
end-to-end manner. Experiments on public benchmark datasets Robust04 and
WebTrack2009-12 are conducted to show the effectiveness of LGRe. Detailed
implementations are further analyzed in experiments, such as the effect of addi-
tional word relations on query-document relations.

To sum up, our major contributions lie in the following aspects:

• We explore masking strategies applicable to building a bipartite-core word
graph as the matching between query and document.

• We refine word representations on this graph through graph recurrent neural
network to alleviate useless word relation’s effect.

• We propose a triangle distance loss function for the embedding layer, which
helps learn discriminative representations for the downstream ranking task.

2 Related Work

Here we briefly review some related studies in terms of neural ranking models
without BERT, BERT based ranking models and Graph neural network.
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2.1 Interaction Based Neural Ranking Models

Interaction based neural ranking models assume that relevance is in essence
about the relation between input texts and it is more effective to learn from
interactions rather than individual representations. They focus on designing the
interaction function to produce the relevance score. Existing interaction func-
tions are divided into two kinds: non-parametric and parametric interaction
functions [7].

Traditional non-parametric interaction functions includes binary indicator,
cosine similarity, dot product and radial basis function so on. DRMM [6] con-
verts a local interaction matrix for the query-document word pair to a fixed-
length matching histogram for relevance matching. MatchPyramid [16] pro-
duces a query-document relevance score by convolution operations over a query-
document similarity matrix. Parametric interaction functions are to learn the
similarity/distance function from data. For example, Conv-KNRM [4] uses con-
volutional neural network to represent n-grams of various lengths, matches them
in a unified embedding space for the kernel pooling and learning-to-rank layers
to generate the final ranking score. Arc-II [8] performs convolution and pooling
on the word interaction between two sentences. In this sense, BERT based rank-
ing models can also be treated as parametric interaction based neural ranking
models.

2.2 Pretrained Neural Language Models for IR

Pretrained Neural Language Models (PNLM), e.g., BERT [5] and ELECTRA [1],
have achieved state-of-the-art results in many NLP tasks. As mentioned above,
it works for the ad hoc ranking because the attention matrix in BERT can
be regarded as an interaction function. BERT based ranking models have been
shown to be superior to neural ranking models without BERT.

BERT-MaxP [2] splits a document into overlapping passages. The neural
ranker predicts the relevance score of each passage independently. Document
score is the score of the best passage. CEDR [14] incorporates BERT’s classifica-
tion vector into existing neural models, such as DRMM [6] and Conv-KNRM [4].
PARADE [10] leverages passage-level representations to predict a document rel-
evance score without passage independence assumption. Rather than fine tun-
ing BERT-base on a Bing search log, PARADE improves performance by fine
tuning on the MSMARCO passage ranking dataset. Other researches focus on
how to improve the efficiency of PNLM in retrieval tasks. PreTTR [13] precom-
putes part of the document term representations at indexing time, and merge
them with the query representation at query time to compute the final ranking
score. DeepCT [3] maps the contextualized term representations from BERT
into context-aware term weights for efficient passage retrieval.

2.3 Graph Neural Network

Graph neural network (GNN) has recently been widely studied in many fields
because of its high-order relation capture ability. The information propagation
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step is key to obtain the hidden states of nodes (or edges) for GNN. According to
different information propagation methods, GNN can be divided into convolution
based, attention based and recursive based models so on [20]. Convolution based
GNN, extending convolution operation to the graph domain, includes spectral
approaches and spatial approaches. Through the attention mechanism, attention
based GNN focuses on important nodes in the graph and important informa-
tion of these nodes for the sake of improving the signal-to-noise ratio of the
original data [18]. Recursive based GNN attempts to use the gate mechanism
like GRU [11] in the propagation step to improve the long-term propagation of
information across the graph structure.

3 Method

We first formalize the ad hoc document retrieval task. To overcome the inherent
weakness of BERT for ranking, the network architecture of our proposed LGRe
is described. Additionally, we propose a triangle distance loss function for better
representations to aid the downstream ranking task. Both the triangle distance
and pairwise ranking loss functions are optimized jointly.

3.1 Formalization

Ad hoc document retrieval task is to produce the ranking of documents in a
corpus given a short query. There are Q queries {qi}Qi=1 for training. Each query
q is represented as a word sequence sq = wq

1,w
q
2, . . . ,w

q
m and also associated with

a document set Dq = {(dj , yj)}nq

j=1. yj ∈ {0, 1} is the ground truth relevance label
of document dj . Non-relevant documents from Dq are denoted as D−

q (|D−
q | =

n−
q ) and relevant documents denoted as D+

q (|D+
q | = n+

q ). Document d ∈ Dq

is denoted as a word sequence sd = wd
1,w

d
2, . . . ,w

d
n. How to model the text

matching between query and document is key to neural ranking models.

3.2 Architecture

As mentioned before, BERT has such a natural advantage to become a ranker
that its learned attention matrices model the query and document interaction.
However, its disadvantage is also evident that these learned attention matrices
describe all possible word relations without emphasis on the query-document
word relations. To solve this problem, we mask these unnecessary word relations
and introduce a refinement process over this masked graph. Through this refine-
ment process, word representations will be more suitable to derive the relevance
score between query and document. The whole architecture is depicted in Fig. 1.

Transformer Layer. For each query-document pair (q, d), two word sequences
are concatenated, i.e. s(q,d) = [[CLS], sq, [SEP], sd, [SEP]]. Its input embedding
I(q,d) is derived from the sum of the word embedding and its corresponding posi-
tion embedding. Then I(q,d) is fed into BERT stacked with L identical layers. For
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Fig. 1. Latent graph recurrent network architecture

example, L = 12 in BERT-base. For each word i at each layer l = 1, . . . , L, its
word representation E(q,d)

l (i) ∈ R
dk is obtained by weighted summing represen-

tations of the other words in Eq. (2), dk is the dimension of word representations.

A(q,d)
l−1 = softmax(

(WBE(q,d)
l−1 )(WBE(q,d)

l−1 )′
√

dk
) (1)

E(q,d)
l (i) = E(q,d)

l−1 (i) +
∑

j

A(q,d)
l−1 (i, j)E(q,d)

l−1 (j) (2)

where A(q,d)
l−1 is the attention matrix learned in the l − 1-th layer and E(q,d)

0 =

I(q,d). Through this layer, we obtain L attention matrices {A(q,d)
l }Ll=1 for the

query-document pair (q, d). Each attention matrix A(q,d)
l naturally models the

query-document word interaction.

Bipartite-Core Word Graph Construction. These attention matrices also
contain query-query and document-document word interaction, which are not
obviously useful for query-document matching in the current ranking task. Par-
ticularly, some studies [2] show that these additional interactions may harm
the retrieval performance. Here we propose to mask some relations to build
a bipartite-core word graph to model the text matching between query and
document. Intuitively, there are three different implementations. One extreme
case is to keep all the word relations in the attention matrix without mask-
ing, which can be treated as the summation of query-document bipartite word
adjacent matrix, full document word adjacent matrix and full query word adja-
cent matrix, referred to as Full Word Graph. The other extreme case is to keep
only query-document bipartite word relations in the attention matrix and mask
these other relations, namely Query-Document Bipartite Word Graph. In the
middle, we keep some document neighbor word relations and query-document
bipartite word relations in the attention matrix and obtain the summation of
query-document bipartite word adjacent matrix and document neighbor word
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adjacent matrix, namely Query-Document Bipartite and Neighbor Word Graph.
All three kinds of graphs are bipartite-core graphs. For each transformer layer
l, we define a masking matrix M(q,d)

l for each implementation, and the masked
word adjacent matrix of the bipartite core graph is derived as Eq. (3), where ε
is small enough.

Â(q,d)
l = softmax(

(WAE(q,d)
l )(WAE(q,d)

l )′
√

dk
+ ε(1 − M(q,d)

l )) (3)

(a) Full (b) Bipartite (c) Bipartite+Neighbor

Fig. 2. Bipartite-core word graphs constructed from three strategies. Blue, green and
grey color represent the word attention score between query and query, document and
document, query and document separately. White means no word relation. (Color figure
online)

• Full Word Graph. We keep all the word relations in s(q,d). No relations will
be masked, so M(q,d)

l = 1(m+n+3)×(m+n+3), where 1(m+n+3)×(m+n+3) is a
matrix with all elements 1. The masked attention matrix is shown in Fig.
2(a).

• Query-Document Bipartite Word Graph. In terms of query-document text
matching, there are two types of words. We only keep all the relations between
two types of words. As shown in Fig. 2(b), word relations within a query and
a document are removed, and white means there are no edges between two
corresponding nodes. The up-triangle masking matrix is obtained from Eq.
(4) for i ≤ j, and the down-triangle masking matrix is filled according the
symmetry M(q,d)

l (j, i) = M(q,d)
l (i, j). Thus the whole masking matrix M(q,d)

l

is applied in Eq. (3) to obtain the query-document bipartite word adjacent
matrix.

M(q,d)
l (i, j) =

⎧
⎪⎨

⎪⎩

1 1 ≤ i ≤ m,m + 2 ≤ j ≤ m + n + 2
1 i = j

0 otherwise
(4)
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• Query-Document Bipartite and Neighbor Word Graph. Word order informa-
tion plays an important role in the search task, especially for the long doc-
ument. Thus we take some local document word relations into consideration
and keep its left and right r neighbors word relations. As shown in Fig. 2(c),
the sliding window size is 2r + 1 over the document and nearly 2r + 1 diago-
nals are colored here. In bipartite attention matrix in Fig. 2(b), there is only
one diagonal. The up-triangle masking matrix is set as Eq. (5) for i ≤ j, and
the down-triangle masking matrix is filled with M(q,d)

l (j, i) = M(q,d)
l (i, j)

according to its symmetric property. Thus the whole masking matrix M(q,d)
l

is applied in Eq. (3) to obtain the query-document bipartite and neighbor
word adjacent matrix.

M(q,d)
l (i, j) =

⎧
⎪⎨

⎪⎩

1 1 ≤ i ≤ m, m + 2 ≤ j ≤ m + n + 2
1 m + 2 ≤ i ≤ m + n + 2, j = i, . . . , i + r

0 otherwise
(5)

Word Representation Refinement. Through the above layer, we remove
the unnecessary information from the word graph A(q,d)

l and obtain the bipar-
tite core graph Â(q,d)

l . Similarly, word representations E(q,d)
l learned from BERT

also need to be refined to separate the relevant information from these noisy
relations. We use Gated Graph Neural Networks (GGNN) [11] to update word
representations over the bipartite-core graph Â(q,d)

l . At each propagation step,
GGNN aggregates neighbor word representations for each word in the graph
Â(q,d)

l and concatenates word representations from the last iteration and from
neighborhood aggregation this iteration as the input embedding of Gated Recur-
rent Unit (GRU) in Eq. (7). This will help utilize high-order word relations to
obtain fine-grained representations. Word attention matrix is computed accord-
ing to Eq. (8). The query-document pair representation is aggregated as Eq. (9).

h0 = E(q,d)
l (6)

ht = GRU([ht−1, Â(q,d)
l ht−1]) (7)

hatt
T = (WahT ) · (WhhT )′ (8)

hGq,d

l = [sum(hatt
T ) + max(hatt

T ),E(q,d)
l (0)] (9)

After T propagation steps, a final graph level representation for each query-
document pair is learned denoted as hGq,d

l for each transformer layer l. Then it
is fed into the last fully connected layer with weight matrix Ws to predict the
relevance score sl(q, d) in Eq. (10). The final relevance score f(q, d) is determined
by the linear combination of all the relevance scores {sl(q, d)}Ll=1 in Eq. (11).

sl(q, d) = Wsh
Gq,d

l + bs (10)

f(q, d) = wf (sl(q, d))1×L + bf (11)
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3.3 Loss Function

To derive a robust ranking function, the pairwise ranking loss is usually used for
optimization. Additionally, we introduce a metric learning task as an auxiliary
task to learn discriminative representations.

From the embedding perspective, we propose a triangle distance loss to place
constraints on query, document and query-document representations. Cosine dis-
tance [9] was first introduced to make examples with different labels separated
from each other in the classification problem. Similarly treating query-document
pair as an instance, we define the distance between query-document represen-
tations with different labels as this cosine distance, referred to as pairwise
cosine distance. The pairwise cosine distance is computed for transformer
and refinement layer respectively, whose query-document representations are
E(q,d)

L (0) = e(q,d)L and hGq,d

L correspondingly. The distance summation of both
layers is shown in Eq. (12). It only puts constraints on query-document represen-
tations in Fig. 3(b). We further split this unified query-document representation
E(q,d)

L into query representation Eq
L and document representation Ed

L. Moreover,
we define the pointwise cosine distance between a query and document rep-
resentations in this ranking scenario as Eq. (13). This pointwise distance only
puts constraints between a query and document representations without docu-
ments of different labels as Fig. 3(a). Neither pairwise nor pointwise distance
will produce compact representations for query, document and query-document
representations. So we propose a triangle distance to combine both pairwise
and pointwise cosine distance as Eq. (14). As shown in Fig. 3(c), this triangle dis-
tance place constraints not only on the distance between a query and document
representations but also on the distance between different documents.

Cpair(q,Dq) =
1

2n+
q n−

q

∑

d+∈D+
q

d−∈D−
q

2+cos(e(q,d+)
L , e(q,d−)

L )+ cos(h
Gq,d+
L ,h

Gq,d−
L ) (12)

Cpoint(q,Dq) =
1
nq

nq∑

j=1

1 + (1 − 2yj) cos(Eq
L,Edj

L ) (13)

Ltriangle(q,Dq) = Cpoint(q,Dq) + Cpair(q,Dq) (14)

From the ranking perspective, we introduce a margin based pairwise ranking
loss as follows

Lrank(q,Dq) =
1

|D+
q ||D−

q |
∑

d+∈D+
q

∑

d−∈D−
q

max (0, 1 − f(q, d+) + f(q, d−)) . (15)

We train both tasks in a multi-task learning framework with the optimization
of λLtriangle(q,Dq) + Lrank(q,Dq).
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(a) Pointwise Distance (b) Pairwise Distance (c) Triangle Distance

Fig. 3. Illustration of different constraints’ effect on learned query/document represen-
tations

4 Experiments

We compare our proposed model LGRe with state-of-the-art baselines to inves-
tigate its effectiveness on two public benchmark datasets. Moreover, ablation
studies for each component of LGRe are also explored.

4.1 Experimental Setting

Datasets. We use two TREC collections, Robust04 and WebTrack2009-12.
Robust04 uses TREC discs 4 and 51, and WebTrack 2009-12 uses ClueWeb09b2

as document collections. Note that the statistics are obtained only from the doc-
uments returned by BM25. Both data sets are white-space tokenized, lowercased,
and stemmed using the Krovetz stemmer. Consistent with the baselines of the
corresponding dataset, Robust04 uses Indri3 for indexing, and WebTrack2009-12
uses Anserini [19] for indexing. Table 1 provides detailed information on these
two data sets.

Table 1. Statistics of datasets.

#Docs Avg. Doc. Len #Queries Avg. Query Len #Docs/Query

Robust04 37, 500 428.2 250 3.62 150

WebTrack2009-12 19, 590 1, 393.0 200 2.64 100

Baselines. Three kinds of baselines are compared over these two datasets. (1)
BM25: Candidate documents for each query are usually generated by BM25 in
the first stage ranking. (2) Interaction based Neural Ranking Models (without
BERT): DRMM [6] and ConvKNRM [4]. (3) BERT based Neural Ranking Mod-
els: Vanilla BERT, BERT-MaxP [2], CEDR-KNRM [14], and PARADE [10].

1 520k documents, https://trec.nist.gov/data disks.html.
2 50M web pages, https://lemurproject.org/clueweb09/.
3 http://www.lemurproject.org/indri.php.

https://trec.nist.gov/data_disks.html
https://lemurproject.org/clueweb09/
http://www.lemurproject.org/indri.php
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Training Setting. For all BERT based baselines in our experiments, we make
domain adaptation on MSMARCO.4 Simple domain adaptation of BERT leads
to a pre-trained model with both types of knowledge that can improve related
search tasks where labelled data are limited [2]. Some performance results on
Robust04 come from the paper aggregation site “Papers With Code”.5 Since
WebTrack2009-12 does not have a unified data preprocessing pipeline similar to
Robust04, we compare all baselines based on our data preprocessing pipeline.

Evaluation Setting. With the same division on both datasets, we use five fold
cross validation with three folds for training, one fold for validation and one fold
for test. The number of training epochs is 20 with batch size 32. The learning
rate of BERT fine-tuning and LGRe is 1e−5 and 5e−5 respectively. λ is 1e−2.
All these hyperparameters are chosen according to performances in terms of the
P@20 and nDCG@20 on the validation set, which are computed using script
trec eval.6

4.2 Effectiveness Analysis

The ranking performance of LGRe (bipartite and neighbor masking strategy +
triangle distance) on both document ranking datasets is shown in Table 2. All the
performances are averaged on five test sets for each dataset. Imp.% column in the
table corresponds to the relative performance improvement of LGRe compared
with each baseline. From Table 2, we observe the following phenomena.

Table 2. Ranking performance comparison among different models on Robust04 and
WebTrack2009-12. Best results are in bold. The relative performance improvement is
statistically significant with p < 0.01 in two-tailed paired t-test.

Robust04 WebTrack2009-12

Model P@20 Imp.% nDCG@20 Imp.% P@20 Imp.% nDCG@20 Imp.%

BM25 0.3123 53.38 0.4140 31.96 0.2805 27.95 0.1772 53.78

DRMM 0.2892 65.63 0.3040 79.70 0.3077 16.64 0.2015 35.24

Conv-KNRM 0.3408 40.55 0.3871 41.13 0.3155 13.76 0.213 27.93

Vanilla BERT 0.4042 18.51 0.4541 20.30 0.3253 10.32 0.254 7.28

BERT-MaxP 0.4277 11.99 0.4931 10.79 0.3373 6.40 0.2613 4.28

CEDR-KNRM 0.4667 2.64 0.5381 1.52 0.3481 3.10 0.2653 2.71

PARADE 0.4604 4.04 0.5399 1.19 – – – –

LGRe 0.479 – 0.5463 – 0.3589 – 0.2725 –

4 https://microsoft.github.io/TREC-2019-Deep-Learning.
5 https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04.
6 https://trec.nist.gov/trec eval.

https://microsoft.github.io/TREC-2019-Deep-Learning
https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04
https://trec.nist.gov/trec_eval
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(1) Compared with the best state-of-the-art baseline on each dataset, LGRe’s
relative performance gain is not less than 2% in terms of Precision@20. This
improvement is statistically significant in the ranking task.

(2) Among all three kinds of baselines, BERT based ranking models achieve the
best performance. One reason is that these interaction based ranking models
without BERT usually derive the interaction matrix based on shallow pre-
trained word embedding, such as word2vec [15]. These shallow word embed-
ding only capture the local context, such as synonym, but cannot obtain
complex or global patterns among words. This problem is solved by BERT
with global word interactions, which makes it possible. The other reason is
that interaction based ranking models like DRMM [6] predefine the query-
document interaction matrix as input ignoring the query and document
representation learning. All the interaction matrix, query and document
representations are dynamically learned from data for BERT based ranking
models. These learnable parameters make ranking models more flexible and
suitable for different datasets.

(3) Compared with Vanilla BERT, LGRe’s performance improvement agrees
with our motivation that vanilla BERT has an inherent weakness though
it naturally considers with the document ranking task. LGRe is mainly
composed of BERT and word representation refinement process based on
BERT. To a certain degree, LGRe’s performance improvement also indicates
the necessity of the following word refinement process in its architecture as
Fig. 1.

(4) For all methods in Table 2 except DRMM [6], the ranking performance
is higher on Robust04 than it on WebTrack2009-12. Dataset statistics show
that the averaged query length is shorter and the averaged document number
of each query is fewer on WebTrack2009-12. Fewer training instances may
be one reason. So we will make a further study to verify the effect of query
length on the ranking performance.

4.3 Ablation Study for Masking Strategy

Three candidate strategies for the bipartite-core word graph construction are
compared: (1) Full Word Graph: denoted as LGRe(Full). (2) Query-Document
Bipartite Word Graph: denoted as LGRe(Bipartite). (3) Query-Document Bipar-
tite Core and Neighbor Word Graph: denoted as LGRe(Bipartite+Neighbor).
Note that all the methods in Table 3 have the same setting except the masking
strategy, such as adopting the pairwise ranking loss plus the triangle cosine dis-
tance loss as the loss function. Imp.% column means the relative performance
improvement of each other method compared with LGRe(Full), i.e. no masking.

The primary comparison result in Table 3 is that masking some word rela-
tions in the attention matrix will bring about the performance gain. The rela-
tive performance gain is statistically significant, at least 0.5%. It indicates that
some word relations, such as query-query and document-document, learned from
BERT are noise for the query-document text matching problem. The masking
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Table 3. Ranking performance comparisons with different masking strategies on
Robust04

Model P@20 Imp.% nDCG@20 Imp.%

LGRe (Full) 0.471 – 0.5359 –

LGRe (Bipartite) 0.4764 1.15 0.5447 1.64

LGRe (Bipartite+Neighbor) 0.4771 1.3 0.5403 0.82

strategy for graph construction is essential for LGRe. Additionally, keeping doc-
ument neighbor word relations does not always promote the ranking perfor-
mance. The relative NDCG@20 decreases by 0.82% due to document neighbor
word relations, although the relative P@20 increases by 0.15%. The introduc-
tion of document neighbor word relations makes adjacent word representations
learned from the word graph much closer. This leads to a smaller distinction
between relevant documents’ representation, which are originally near to each
other. That is why the addition of document neighbor word relation will increase
the hit rate of relevant documents, and hurt the ranking of relevant documents.

(a) Full (b) Bipartite (c) Bipartite+Neighbor

Fig. 4. Attention matrices learned from LGRe with different masking strategies. The
green box represents exact term matching. The blue box represents synonym matching.
The yellow line is the dividing line between query and document. (Color figure online)

For an intuitive understanding, we choose a specific query and document
from Robust04. Query: “international, organized, crime”. Document (stop words
removed): “individual, regions, country, crime, international, spread, remote, for-
eign, parts, nearby”. Attention matrices learned from different masking strate-
gies are shown in Fig. 4. As we know, the meaning of short queries are vague,
and forms of short queries are incomplete. For the full word graph in Fig. 4(a),
the exact matching signals on “international” and “crime” is overwhelmed by
many relations in documents. For the bipartite word graph in Fig. 4(b), the
exact matching signals on ‘international” and “crime” are obviously enhanced
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by masking query and document word relations. For Fig. 4(c), the addition of
document neighbor word relations will promote the exact matching signals and
strengthen the relation of semantically similar words, such as “international”
and “foreign”, “organized” and “country”. Meanwhile, relating some unrelated
words may become possible noise for the final ranking. This case study gives a
better explanation of the performance gain of both LGRe (Bipartite) and LGRe
(Bipartite+Neighbor) in Table 3.

4.4 Ablation Study for Distance Learning Task

We introduce the cosine distance learning task as the auxiliary task for docu-
ment ranking in LGRe. Whether this task is an essential part will be studied
here. If it is necessary, which distance definition among three kinds in the Loss
function section is the best choice. We compare LGRe with different loss func-
tions on Robust04: (1) LGRe+none: only the pairwise ranking loss without any
distance loss. (2) LGRe+point: the linear combination of pairwise ranking loss
and pointwise cosine distance loss. (3) LGRe+pair: the linear combination of
pairwise ranking loss and pairwise cosine distance loss. (4) LGRe+triangle: the
linear combination of pairwise ranking loss and triangle cosine distance loss.
Experimental results are shown in Table 4. Imp.% column corresponds to the
relative performance improvement of each method compared with LGRe+none.

Table 4. Ranking performance comparisons among LGRe with different distance def-
initions on Robust04

Model P@20 Imp.% nDCG@20 Imp.%

LGRe+none 0.4771 – 0.5403 –

LGRe+point 0.4769 −0.04 0.5419 0.30

LGRe+pair 0.4778 0.15 0.5427 0.44

LGRe+triangle 0.479 0.39 0.5463 1.11

In most cases, the auxiliary task, i.e. cosine distance learning task, plays a
positive role in the document ranking problem in Table 4. The only exception
is LGRe+point under the P@20 evaluation. Obviously, the relative performance
gain for both LGRe+point and LGRe+pair is limited. However, the performance
improvement from the combination of pointwise and pairwise cosine distance
loss, i.e. triangle distance loss, is much higher than the summation of performance
gains from pointwise and pairwise distance loss separately. This 1 + 1 > 2 effect
on ranking performances shows the advantage of triangle cosine distance loss.
Whether the cosine distance loss will help learn discriminative and compact
representations remains unknown. Thus, we analyze a specific query, and plot
query and document representations through dimension reduction with t-sne[12]
shown in Fig. 5.
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(a) LGRe+none (b) LGRe+point

(c) LGRe+pair (d) LGRe+triangle

Fig. 5. Query and document representations from LGRe with different losses. The
pentagram means the mass center of each group.

Several results are obtained from Fig. 5. (1) (a) v.s. (b) and (c) and (d).
The cosine distance learning task makes query, relevant and non-relevant docu-
ment representations apart from each other. The reason lies that the embedding
loss constrains representations directly, while the pairwise ranking loss takes
indirectly effect on learned representations. (2) (b) v.s. (d). LGRe+point only
defines a query and document point distance, and requires non-relevant doc-
ument point far from and relevant document point near by the query point.
This may lead to the problem in Fig. 5(b) that some relevant and non-relevant
document points are mixed together. (3) (c) v.s. (d). LGRe+pair only defines
a relevant and non-relevant document point distance, and requires non-relevant
document points are far from relevant document points. This may lead to the
problem in Fig. 5(c) that two kinds of distances from query to relevant and
non-relevant document points respectively are not distinguishable. Generally, it
is better to choose the triangle distance learning task as the auxiliary task to
learn a discriminative representation for all the query, relevant and non-relevant
documents.

4.5 Query Length Analysis

As mentioned before, one possible reason for the lower performance on WebTrack
2009-12 is shorter queries. To further explore the effect of query length on the
ranking performance of BERT based ranking models, we conduct a group study
on different query lengths. Robust04’s queries are divided into two groups: one
group with query length ≤ 3, the other group with query length > 3. The
number of queries in two groups is 144 and 106 respectively. We randomly select
100 queries from each group, and randomly divide them into training, validation,
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and test set with a ratio of 8 : 1 : 1. Performance comparisons on the test set with
vanilla BERT and BM25 are shown in Table 5. Imp.% column represents the
relative performance improvement of each other method compared with BM25.

Table 5. Ranking performance comparisons on two subsets of Robust04 with different
query lengths.

QLEN≤3 QLEN>3

Model P@20 Imp.% nDCG@20 Imp.% P@20 Imp.% nDCG@20 Imp.%

BM25 0.3857 – 0.4689 – 0.425 – 0.4851 –

Vanilla BERT 0.3935 2.02 0.4729 0.85 0.4291 0.96 0.4876 0.52

LGRe 0.4357 12.96 0.5058 7.89 0.44 3.53 0.493 1.63

For all the methods, absolute performances on the shorter query subset are
usually lower than these on the longer query subset. This suggests that document
ranking for shorter queries is more difficult. Due to the concatenation of query
and document pair as input, BERT models the global word interaction over the
query-document text. This helps query words find their related words, which
will alleviate the difficult short query problem to some degree. In this sense,
both BERT based ranking models obtain higher performances gain on shorter
queries than these on longer queries in Table 5. Due to the addition of the word
representation refinement process, LGRe’s relative performance improvement
is much higher than vanilla BERT’s. Compared with longer queries, the global
word interaction learned from BERT is easier to generate a query-document rep-
resentation submerging the query information. The refinement process of LGRe
makes the query part emerge in the query-document representation.

5 Conclusion

To overcome the inherent weakness of BERT in the ranking task, we propose
LGRe to refine word representations. We propose to mask the attention matrix
from BERT to construct a bipartite-core word graph as the text matching
between query and document. Then, word representations are updated through
recurrent propagation steps to remove the useless information from original word
embedding. Additional, triangle distance learning task is proposed to serve as
the auxiliary task for document ranking.
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18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

19. Yang, P., Fang, H., Lin, J.: Anserini: enabling the use of Lucene for information
retrieval research. In: Proceedings of the 40th International ACM SIGIR, pp. 1253–
1256 (2017)

20. Zhou, J., et al.: Graph neural networks: a review of methods and applications.
arXiv preprint arXiv:1812.08434 (2018)

http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-642-41278-3_74
http://arxiv.org/abs/2008.09093
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/2004.14255
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1602.06359
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1812.08434

	Latent Graph Recurrent Network for Document Ranking
	1 Introduction
	2 Related Work
	2.1 Interaction Based Neural Ranking Models
	2.2 Pretrained Neural Language Models for IR
	2.3 Graph Neural Network

	3 Method
	3.1 Formalization
	3.2 Architecture
	3.3 Loss Function

	4 Experiments
	4.1 Experimental Setting
	4.2 Effectiveness Analysis
	4.3 Ablation Study for Masking Strategy
	4.4 Ablation Study for Distance Learning Task
	4.5 Query Length Analysis

	5 Conclusion
	References




